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Math 404 Graded Homework 2 Name:
Due April 29, 2003

To receive full credit, you must show all work.

Question 1 This is exactly problem 11 from section 2.2 in the book. Prove that a straight line is
the shortest curve that joins two points in R

3. Do this the following way: Let c : [a, b] → R
3 be an

arbitrary curve from p = c(a) to q = c(b). Let u = (q − p)/‖q − p‖.
a) Show that if σ is a straight line segment from p to q, say σ(t) = (1− t)p+ tq, 0 ≤ t ≤ 1, then

L(σ) = d(p, q).
b) Cauchy-Schwartz implies that ‖c′‖ ≥ c′ · u. Use this to deduce that L(c) ≥ d(p, q).
c) Show that if L(c) = d(p, q), then c is a straight line segment.

Question 2 Now we are going to investigate the same problem using the calculus of variations.
Very often in math or physics, one is interested in minimizing or maximizing a functional. For our
purposes a functional F will be a function from some set of functions to R. These are often given
by integrals. For example, consider the set C of all smooth curves c in the plane joining p to q and
parametrized on the interval [a, b]. Then the length functional L is L : C → R given by

L(c) =
∫ b

a

‖c′‖ dt

If we further assume that c is the graph of a function y = c(t) joining the points p = (a, c(a)) to
q = (b, c(b)), then L can be written as

L(c) =
∫ b

a

√
1 + (c′)2 dt

To find the shortest curve joining p to q, we would like to “differentiate L with respect to c” and
set the result equal to 0 to find the “critical curves” which we hope are minimums or shortest curves
(geodesics).

Here is the general framework in which to do this. Consider a suitably differentiable function
F : R × R × R → R, given by F (t, x, y). We wish to find the maxima/minima of the functional

J(c) =
∫ b

a

F (t, c(t), c′(t)) dt

(To get the length functional, let F =
√

1 + y2.)
Now we consider a variation of c with endpoints fixed, that is, a function

α : (−ε, ε) × [a, b] → R

such that α(0, t) = c(t) and α(u, a) = p and α(u, b) = q for all u ∈ (−ε, ε). Note that for fixed
u = u0, α(u0, t) is just a curve joining p to q. See the picture. As u varies we get a family of curves
which “pass through” c when u = 0. Denote the u–th curve by α(u).



a) Now it’s your turn to do some stuff. For a variation α, show that
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Since mixed partials are equal,
∂2α

∂u∂t
=

∂2α

∂t∂u
, apply integration by parts to the second term in

the integrand and use the fact that endpoints are fixed to conclude
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b) Thus critical points of J correspond to curves c with

∂F

∂x

(
t, c(t), c′(t)

)
− d

dt

(
∂F

∂y

(
t, c(t), c′(t)

))
= 0

This is called the Euler-Lagrange equation of the functional J . Use this to show that straight lines
are critical points of the length functional L. (F (t, x, y) =

√
1 + y2.) To show these are actually

minima we would have to compute the second derivative of J with respect to u and use the second
derivative test. This can be done, but is a big mess!
c) Suppose now that you wanted to find a curve c given as a graph y = c(t) over [a, b], for which the
surface of revolution obtained by rotating c about the t–axis has minimal area amongst all curves
joining (a, c(a)) to (b, c(b)). To make the problem interesting we assume that c(t) > 0 on [a, b].
This will give a so-called minimal surface of revolution. What should the function F be, so that the
corresponding functional J represents the area of the surface of revolution? Deduce that a curve c
that generates a minimal surface of revolution satisfies the non-linear differential equation

1 +
(

dc

dt

)2

− c(t)
(

d2c

dt2

)
= 0

Miraculously, this differential equation can be solved since the indpendent variable t is missing
using some standard tricks. See, for example, the Boyce–DiPrima book on differential equations. It

turns out that the solution to this differential equation is c(t) = C cosh
(

t + K

C

)
, where C and K

are constants. The resulting surfaces are called catenoids.


